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The propagation of dispersive nonlinear waves in continuous and discrete media is in-
vestigated. The small scale dispersive oscillations are averaged out and a complete set of
modulation equations that describe the evolution of the macroscopic quantities are derived
and in special cases solved. At the level of greater refinement, detailed information on the
small scale structure is obtained in integrable models. This is made possible by the de-
velopment of a powerful new technique that leads to the explicit asymptotic solution of
Riemann-Hilbert problems. Other techniques employed include, Liapounov-Schmidt decom-
position, modulation theory, eigenvalue dynamics, stability analysis, and shock wave theory.
Models analyzed include the integrable as well as the generalized nonitegrable Korteweg-de
Vries equation, the (modulationally unstable) nonlinear Schroedinger equation, and particle
chains under various types of forcing.

Semiconductor instabilities are also investigated, which lead to the generation of time-
periodic waves in semiconductors upon appropriate dc voltage bias. The nature of the
instability that drives such time periodic behavior is explained and the phenomena are
analyzed and understood by the use of analytical and computational means.
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1 Statement of the Problem

1.1 Dispersive Waves

Nonlinear dispersive wave motion manifests itself in many physical systems such as water
waves and solitonic fiber-optical transmission. It has application in the electron flow analysis
in semiconductors due to the dispersive character of the quantum hydrodynamic model; it
is also relevant in superconductivity and superfluidity where one obtains Ginsburg-Landau
equations of dispersive character. Finally, dispersive vibrations occur naturally in discrete
media such as molecular lattices.

The focus of the present research has been to analyze the propagation of dispersive
waves in both continuous and discrete media using the simplest model systems in which
nonlinearity and dispersion coexist. In the dispersive systems studied, there is interaction
between two different space-time scales, the small scale consisting of strongly nonlinear
single or multiphase travelling waves whose wave parameters vary in the large scale. Such a
situation arises generically in the solution of many nonlinear dispersive pde and ode systems.
As a rule, the presence of a small dispersive term smoothens the shocks produced by the
nonlinearity through the generation of rapid oscillations, that travel and spread over large
space regions. Thus, an oscillatory microstructure may typically arise out of non-oscillatory
initial data.

The first objective in the PI’s approach is to average out the small scale dispersive oscil-
lations and derive and solve a closed system of effective equations for macroscopic quantities.
At the level of greater refinement, the goal is to obtain detailed information on the small
scale structure e.g. resolve the local wave structure. Integrable and nonintegrable models
have been used. In the integrable case, the powerful techniques of inverse scattering are
further developed to obtain very detailed information on the behavior of the models. In the
nonintegrable models, a combination of asymptotic techniques and rigorous iterative meth-
ods are employed. In both cases the emphasis has been on explaining and calculating the
sharp phenomena that are observed in numerical experiments.



1.2 Waves in Semiconductors

Semiconductor instabilities are investigated, which lead to the generation of time-periodic

" waves in semiconductors upon appropriate dc voltage bias. An example of such a time-

periodic phenomenon is the Gunn effect, in which a solitary pulse, born at the one end of
a Galium Arsenide (GaAs) sample under appropriate dc voltage bias, travels through the
sample to vanish into the other end just as a new pulse that repeats the phenomenon is born
at the first end. The goal is to study the nature of the instability that triggers such time
priodic behavior and to use andlytical and computational means to understand and analyze
the phenomena.

2 Progress on Various Fronts

2.1 Continuous Media
2.1.1 Integrable Small Dispersion Problems

The PI has developed, in collaboration with Deift and Zhou [DZVZ1, DVZ2], a rigorous
asymptotic method for calculating the small scale oscillations, including phase shifts, WITH-
OUT apriori postulating them, i.e. without assuming that oscillations arise. The calculation
is in the context of the initial value problem for the Korteweg-de Vries (KdV) equation
uy — Buu, + €2uzx = 0 for small € and can be generalized to many other modulationally
stable integrable systems. The new technique, is an extension of the steepest descent method
for oscillatory Riemann-Hilbert Problems (RHP) developed by Deift and Zhou [DZ], in which
the contour of the RHP is deformed, much in the spirit of contour deformation in the steep-
est descent method for the evaluation of integrals, and a contour of main contribution is
identified. The extension consists in developing a systematic method for identifying the con-
tour of main contribution. The new approach, while reproducing earlier results of Lax and
Levermore [LL1, LL2], and of the PI [V1, V2, V3, V4]], goes far beyond what was earlier
known in resolving the small scale structure. In the course of identifying the contour of main
contribution in the asymptotic analysis of the solution of the vector Riemann-Hilbert formu-
lation of the inverse scattering problem, it introduces the nonlinear analogue of the eikonal
equation that turns out to be a scalar Riemann-Hilbert problem. The final expression for the
waveform, although in explicit form, contains a set of parameters whose calculation requires
the solution of a complicated nonlinear system of algebraic (as opposed to differential) equa-
tions that contain hyperelliptic integrals and are subject to algebraic inequality constraints.
In previous theories[LL2, V1, V4], this information was obtained through the solution of the
modulation system [W1, W2, FFM, TJ, a system of nonlinear hyperbolic equations. Our
algebraic system of equations and inequalities is essentially a complete set of first integrals
for the modulation equations. We have proved the unique solvability of this system in a
particular case. .

2.1.2 Nonintegrable Long -Time Problems

In collaboration with Kasturiarachi, the small dispersion limit for the generalized KAV equa-
tion us+udus+Ugee = 0, that has the KAV dispersive term, but a different nonlinear transport




term has been addressed. The emergence of oscillations with wave parameters varying slowly
in space-time (modulational ansatz) is postulated and modulation equations that describe
the evolution of the wave parameters in the large scale have been derived. The solution
of the modulation system has been studied both numerically and analytically for Riemann
initial data. The corresponding problem for integrable KAV was solved by Gurevich and
Pitaevski [GP].

2.1.3 Weak Turbulence and the Focusing Nonlinear Schroedinger Equation

There are nonlinear dispersive systems in which the wave parameters of the small scale
oscillations do not vary slowly in time but, due to a modulational instability, seem to evolve
chaotically[BM] . Such behavior is displayed by both integrable and nonintegrable models, a
prime model being the focusing Nonlinear Schroedinger Equation (NLS). The time-chaotic
behavior triggered by the modulational instability that seems to feature a gas of solitons is
often referred to as weak turbulence [ZS, LLV]. In current work in collaboration with Deift
and Zhou it is found that the determination of the scattering data involves quantities that
are small beyond all asymptotic orders. This is exemplified in our calculation [unpublished]
on a simple model. The present focus is the study of the problem with shock initial data,
that allows the explicit calculation of the scattering data, while it preserves the richness of
the asymptotically chaotic behavior.

2.2 Discrete Media
2.2.1 Forced Discrete Dispersive Systems

In collaboration with Deift and Kriechrbauer, research has continued on the dispersive phe-
nomena, that occur in forced nonlinear particle chains with neares neighbor interactions, in
particular on the generation of dispersive waves that transport energy away from a shock.
Such phenomena were first observed by von Neuman [vN, see also HD] in his discretiza-
tion of one dimensional gas dynamics. In subsequent famous experiments by Fermi, Pasta
and Ulam [FPU], asymptotic recurrence was observed, contrary to the expectation that
energy would be equipartitioned among the Fourier modes through nonlinear mode inter-
action. These experiments led to the discovery of the integrable chain [F]. In numerical
experiments for various force laws Holian and Straub [HS] first observed critical behavior
of the semi-infinite chain forced by a constant speed on the leading particle that tends to
compress the chain. They observed that the chain tends to become asymptotically quiescent
for low driving speeds, while it tends asymptotically to a binary oscillation when the driver
speed exceeds a critical value. The shock problem, was subsequently studied analytically
and numerically by Holian, Flaschka and McLaughlin [HFM]. In previous work the PI in col-
laboration with Deift and Oba [VDO] gave a complete explanation to the critical behavior in
the case of an integrable chain. In the present research [DKV], a nonlinear theory is derived
for a semi-infinite particle chain forced by a small amplitude time-PERIODIC driver at the
leading particle. A frequency penetration threshold is found. Progressing single phase waves
(integrable or nonintegrable chain) and multiphase waves (integrable chain) that match to
the driver through a boundary layer are rigorously constructed. In the case of the strongly




nonlinear Toda chain, the integrable structure is perturbed by the existence of a driver and
the integrability of the problem is still in question. The evolution of the conventional Lax
operator [L] is no longer isospectral , and its spectrum has a nontrivial evolution in time.
The evolution system of the spectrum is explicitly calculated, and an asymptotic theory is
introduced that explains and predicts with great precision eigenvalue transport phenomena
that are observed numerically. :

2.92.2 The Shock Problem for Nonintegrable Chains

With student Filip, the critical behavior of the chain, forced by a constant velocity at the
leading particle, is studied. A three parameter family of strongly nonlinear periodic traveling
waves is rigorously constructed and a complete set of modulation equations for these waves is
derived. Modulation theory is used to explain the phase transition discovered by Holian and
Straub. In the course of this explanation, the modulation equations are solved numerically.

Modulation theory is used analytically to derive the behavior of the solution in the case
of a rarefaction, in which the driver velocity is in the direction that tends to decompress the
chain. The calculation leads to analyzing a p-system, and this analysis explains the following
phase transition. Assume that the chain is doubly infinite (i.e. particle index n ranges over
—00 < n < 00), initial particle position is z,(0) = dn where d is constant, and initial velocity
is v, = an, a > 0. Then, for a < @i, the chain asympotically has spacing d’ > d, while for
a > a..r the chain breaks into to different pieces with an ever increasing distance between
them (cavitation). This phase transition has been previously explicitly calculated [DKKZ]
in the case of an integrable chain but its explanation had remained open in the more general

nonintegrable case.

2.2.3 Renormalization Phenomena in the Toda Chain

In collaboration with McDonald [McV], the well known explicit formula for the 7-function
of the finite Toda chain is made suitable for the solution of scattering problems in the
infinite chain by a renormalization procedure. The r-function It has essentially the form of
a partition function. in the sense of statistical mechanics. As the number of particles tends
to infinity the exponents in the expression also tend to infinity. A factor is extracted that
blows up in the limit of infinitely many particles. The remaining expression still has the
form of a partition function in which, however, the states are finite energy perturbations
of the asymptotically infinite energy state that has been filtered out. The calculation is
performed in the special context of the shock problem (it improves the [VDO] calculation by
not neglecting the reflection coefficient a priori) but it also applies to all cases of scattering

data.

2.3 Time Periodic Waves in Semiconductors

2.3.1 The Gunn Effect

In collaboration with Bonilla and Higuera [BHV] a linear stability analysis is performed
of the stationary solution of a one-dimensional drift-diffusion model, used to describe the
Gunn effect in Galium Arsenide (GaAs). The Gunn effect is the time-periodic phenomenon




in which a solitary pulse, born at the one end of a GaAs sample under appropriate dc voltage
bias, travels through the sample to vanish into the other end just as a new pulse is born
that repeats the phenomenon. It is shown that for long semiconductor samples under dc
voltage bias conditions and small diffusivity, the steady state may lose stability via a Hopf
bifurcation. It is found that, in the limit of infinitely long samples, a quasicontinuum of
oscillatory modes of the equation, linearized about the steady state, acquire a positive real
part for voltages that are larger than a certain critical value, giving rise to the instability
that constitutes the Gunn effect. The phenomenon is crucially dependent on the shape of
the electron velocity vs electric field curve and in particular on the fact that over a range of
electric field values the slope of the curve is negative, thus providing a negative differential
resistance that drives the instability. The linear stability of the solitary pulse is established
for an idealized electron velocity curve and zero diffusion.

2.3.2 Traveling Fronts in Semiconductor Superlattices

In collaboration with Bonilla, Kindelan and Moscoso, the generation and propagation of
time periodic travelling fronts that produce self-sustained current oscillations observed ex-
perimentally in voltage biased semiconductor superlattices (SL) are analyzed by the use of
asymptotic methods. The superlattice, a structure of alternating layers of two semiconductor
materials, that corresponds to a potential consisting of a number of quantum wells, is exam-
ined in the limit of a large number of wells. The model, the continuum limit of a discrete
model introduced by Bonilla, consists of a nonlinear hyperbolic equation for the electric field
that reflects charge transport, coupled to an integral relation that imposes constant voltage
bias. The equation is supplemented with appropriate shock and entropy conditions. For
appropriate parameter values, a time-periodic solution is found in numerical simulations.
Furhtermore, an asymptotic analysis reveals traveling internal layers that are formed about
shock waves and serve as moving boundaries of spatial domains in which the field depends
on time but, up to exponentially small error, is uniform in space.
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